КТА семинар, 20. септембар 2016.

Наредни састанак Семинара биће одржан у уторак, 20. септембра 2016. у сали 301ф Математичког института САНУ са почетком у 12 часова.

Предавач: Marcus Zibrowius, Heinrich Heine University Düsseldorf, Germany


Апстракт: Consider a compact homogeneous manifold of the form G/H, where G is a compact Lie group and H a subgroup of maximal rank.  A classical theorem of Atiyah, Hirzebruch, Hodgkin and Pittie asserts that, under mild hypotheses, every complex vector bundle on G/H is “stably homogeneous”, i.e., arises from some complex representation of H.  Is the same true for real vector bundles and real representations?  The situation is in fact still unclear. A (mostly) negative answer for “full flag varieties” (G/T with T a maximal torus) will be outlined, but also some recent positive results for homogeneous spaces of positive curvature will be mentioned.